
Verification of the ideal magnetohydrodynamic response at rational surfaces in the
VMEC code
Samuel A. Lazerson, Joaquim Loizu, Steven Hirshman, and Stuart R. Hudson 
 
Citation: Physics of Plasmas 23, 012507 (2016); doi: 10.1063/1.4939881 
View online: http://dx.doi.org/10.1063/1.4939881 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/23/1?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets 
Phys. Plasmas 22, 090704 (2015); 10.1063/1.4931094 
 
Non-linear magnetohydrodynamic modeling of plasma response to resonant magnetic perturbations 
Phys. Plasmas 20, 102510 (2013); 10.1063/1.4824820 
 
On physical interpretation of two dimensional time-correlations regarding time delay velocities and eddy shaping 
Phys. Plasmas 19, 122302 (2012); 10.1063/1.4769849 
 
Current density and plasma displacement near perturbed rational surfaces 
Phys. Plasmas 17, 110707 (2010); 10.1063/1.3507307 
 
Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code 
Phys. Plasmas 17, 032103 (2010); 10.1063/1.3309732 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

198.35.1.205 On: Wed, 13 Jan 2016 16:13:43

http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/99975279/x01/AIP-PT/PoP_ArticleDL_011316/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Samuel+A.+Lazerson&option1=author
http://scitation.aip.org/search?value1=Joaquim+Loizu&option1=author
http://scitation.aip.org/search?value1=Steven+Hirshman&option1=author
http://scitation.aip.org/search?value1=Stuart+R.+Hudson&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4939881
http://scitation.aip.org/content/aip/journal/pop/23/1?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4931094?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/20/10/10.1063/1.4824820?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/12/10.1063/1.4769849?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/17/11/10.1063/1.3507307?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/17/3/10.1063/1.3309732?ver=pdfcov


Verification of the ideal magnetohydrodynamic response at rational surfaces
in the VMEC code

Samuel A. Lazerson,1,a) Joaquim Loizu,2 Steven Hirshman,3 and Stuart R. Hudson1

1Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
2Max-Plank Intitute-fur-Plamaphysik, Oak Ridge, Tennessee 37831, USA
3Oak Ridge National Laboratory, Greifswald 17491, Germany

(Received 16 October 2015; accepted 31 December 2015; published online 13 January 2016)

The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids

26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like

configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces

which possess magnetic transform (i) which is resonant with spectral values of the perturbed

boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered.

This equilibrium possess a rational surface with safety factor q¼ 2 at a normalized flux value of 0.5.

A small resonant boundary perturbation is introduced, exciting a response at the resonant rational

surface. The code is found to capture the plasma response as predicted by a newly developed

analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational

transform (i ¼ 1=q). The VMEC code satisfactorily reproduces these theoretical results without the

necessity of an explicit transform discontinuity (Di) at the rational surface. It is found that the

response across the rational surfaces depends upon both radial grid resolution and local shear

(di=dU, where i is the rotational transform and U the enclosed toroidal flux). Calculations of

an implicit Di suggest that it does not arise due to numerical artifacts (attributed to radial finite

differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory

(minimum values of Di). Scans of the rotational transform profile indicate that for experimentally

relevant levels of transform shear the response becomes increasing localised. Careful examination

of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this

shielding response is present, suggesting the phenomena is not limited to this verification exercise.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4939881]

I. INTRODUCTION

A screw-pinch with resonant boundary perturbation

provides a means to validate the plasma response model of

the VMEC 3D equilibrium code.1 While such a simple prob-

lem may lack experimental relevance, it allows us to clearly

examine the equilibrium response to an applied resonant

boundary perturbation at a magnetic surface with rational

transform (those whose rotational transform can be

expressed as p/q, where p and q are integers). Previous work

by Newcomb suggests that a non-axisymmetric delta current

will form on the rational surface to completely shield out the

perturbed harmonic in the region interior to the surface.2

However, this results in overlapping of flux surfaces, a solu-

tion VMEC explicitly excludes through its magnetic field

representation. Thus, a direct comparison between VMEC

and the classical Newcomb’s solution is ill-posed. Recent

work by Loizu et al. indicates that solutions to Newcomb’s

equation, which do not cause flux surfaces to overlap,

also exist.3 Comparisons between VMEC and these linear

solutions are possible (avoiding the ill-posed comparison).

In particular, we can better gauge how accurately VMEC is

resolving the plasma response at resonant rational surfaces.

Such analysis should also help us better understand

discrepancies between benchmarking efforts focused on

calculating the DIII-D tokamak experimental equilibria

where resonant boundary perturbations are applied.

Recent efforts to benchmark various 3D equilibrium

codes on the DIII-D tokamak have uncovered discrepancies

between linear and non-linear ideal MHD codes. Initial work

focused on examining the plasma response to applied n¼ 3

fields in DIII-D.4 In particular, the plasma response near

magnetic surfaces with low order rotational transform was

investigated. It was found that the VMEC non-linear 3D

ideal MHD equilibrium code differed significantly from

various linear codes. This was despite a plasma response,

near rational surfaces, that scaled linearly with the plasma

boundary deformation (validating the linear limit of the

problem). However, in this work, it was noted that the nested

flux surface constraint was violated (over the pedestal

region) in the linear codes at relatively modest levels of

external perturbation.

A second benchmarking effort on the DIII-D device

examined the plasma response as measured at the vessel

wall.5 In this work, the newly upgraded 3D magnetic diag-

nostic arrays were used to compare the measured plasma

response against simulated results. Here, an n¼ 1 perturba-

tion was applied using the DIII-D in-vessel coil set. The

results suggested that while the linear codes and non-linear

codes differed in their response at rational surfaces theya)lazerson@pppl.gov
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agreed regarding the measured diagnostic response at the

plasma wall. This served as a validation that VMEC could be

used for 3D equilibrium reconstruction.6–9 It was suggested

that a simplified model be examined to better understand the

source of disagreement between the linear and non-linear

ideal plasma response at a rational surface.

The simplest model to consider was a screw-pinch.

Calculations performed by linear codes indicated the

presence of a delta current at a resonant rational surface

(q ¼ 1=i ¼ 2). Such a result is consistent with the classical

Newcomb’s solution to this problem.2 This current com-

pletely shields out the perturbation inside the rational sur-

face, leading to a step-like response in the displacement of

the flux surfaces. However, closer examination showed that

arbitrarily close to the rational surface, flux surfaces were

overlapping. The nested flux surface constraint could only be

preserved for such models in the limit of zero external per-

turbation. The non-linear VMEC code, on the other hand,

explicitly enforces the nested flux surface constraint. This

demonstrates that, while Newcomb’s solution could be used

as a verification exercise for linear codes, comparison with

codes like VMEC was dubious.

Work to reassess linear theory, focusing on the inclusion

of the nested flux surface constraint, has recently been con-

ducted by Loizu et al.3 It was determined that, in order to

satisfy the nested flux surface constraint across a resonant

rational surface, the initially unperturbed equilibrium must

possess an axisymmetric sheet current at the resonant

surface. As a consequence, the rotational transform jumps

across the rational value (by Di) and the surface no longer

leads to a singularity. This sheet current was found to have a

minimum value necessary to preserve the nested flux surface

constraint. It was also found that despite the presence of a

non-axisymmetric d-current, on the resonant surface, the

perturbation penetrates inside the resonant surface and a

non-axisymmetric current is also established within the

plasma volume. Moreover, for this class of MHD equilibria

with discontinuous transform, an exact verification with a

non-linear ideal MHD model was carried out (using the

SPEC code10). This verification exercise showed excellent

convergence with respect to linear theory. It is now reasona-

ble to ask how the VMEC code compares to these results.

This paper examines the VMEC screw-pinch-like

equilibrium from the perspective of this newly established

analytic model. Section II describes the configuration studied

in VMEC and parameter scans that were performed. In

Sec. III, the plasma response across the resonant surface is

examined. Here, the possibility of an implicit axisymmetric

delta current in VMEC is examined. A summary of the

results is presented in the discussion with focus on the impli-

cation for more realistic geometries. The non-axisymmetric

current density of a DIII-D equilibrium is also considered to

highlight that these response features are not unique to the

screw-pinch problem.

II. METHOD

A perturbed large aspect ratio circular cross-section

equilibrium serves as a basis for verification of the VMEC

plasma response against analytic theory. There is an expecta-

tion for solutions to differ from that of Newcomb2 and linear

codes because VMEC imposes the nested flux surface con-

straint everywhere. The linear codes have a step function dis-

continuity in their displacements at rational surfaces, which

translates into an overlapping of surfaces.

The boundary perturbation and plasma profiles were cho-

sen carefully so as to focus on the response at a q¼ 2 surface.

The plasma pressure in these calculations was taken to be

identically zero. This was done in order to suppress the 1=x
type singularities associated with pressure gradients across

rational surfaces.11,12 These singularities are associated with

the resonant harmonic of the parallel current near the rational

surface. An i profile of the form iðsÞ ¼ 0:6� 0:2s, where

s ¼ U=Uedge is the normalised toroidal flux, was chosen

(Uedge ¼ 6:28 Wb). Figure 1 depicts the equilibrium configu-

ration and i profile. Such a profile attempts to avoid other

resonant low-order rationals and interactions between multi-

ple rational surfaces. In cylindrical geometry, the poloidal

and toroidal Fourier modes do not couple. However, care

must be taken with VMEC, as the code can only approximate

cylindrical geometry (large aspect ratio, large field

periodicity).

A boundary perturbation in minor radius (q) of the form

dqðn ¼ 1;m ¼ 2Þ was chosen so as to be resonant with the

q¼ 2 surface. Here, n refers to the toroidal mode numbers

and m the poloidal mode number. The VMEC code uses to-

roidal coordinates to define flux surfaces such that toroidal R

and Z coordinates tracing out a flux surface have the form

Rðs; h; fÞ ¼
XN

n¼�N

XM

m¼0

Rn;mðsÞ cos ðmh� NFPnfÞ; (1)

FIG. 1. Select VMEC flux surfaces

(left) and field period iota profile as a

function of normalized toroidal flux

(right). Pressure profile was set to zero

for these simulations.
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Zðs; h; fÞ ¼
XN

n¼�N

XM

m¼0

Zn;mðsÞ sin ðmh� NFPnfÞ; (2)

where s is a radial flux surface label, h is the poloidal angle,

f is the toroidal angle, and NFP is the fundamental periodic-

ity of the problem. The values N and M define the truncation

of the mode spectrum.

A transformation from the q minor radius representation

to the toroidal coordinate representation must be performed.

The cylindrical q representation of a surface can be written as

qn1;m1
ðs; h; fÞ ¼ aþ dqn1;m1

cos ðm1h� n1fÞ; (3)

where a is the minor radius of the surface, dq is the perturbed

minor radius, and the subscripts on mode numbers are used

to delineate toroidal from minor radius indices. Substituting

into the relations R ¼ R00 þ q cos h and Z ¼ q sin h, we find

R ¼ R00 þ a cos hþ
dqn1;m1

2
cos m1 þ 1ð Þh� n1f½ �

þ
dqn1;m1

2
cos m1 � 1ð Þh� n1f½ �; (4)

Z ¼ a sin hþ
dqn1;m1

2
sin m1 þ 1ð Þh� n1f½ �

�
dqn1;m1

2
sin m1 � 1ð Þh� n1f½ �; (5)

where R00 is the major radius of the toroidal system. From

these equations, the toroidal harmonics R01 ¼ Z01 ¼
a; R1;3 ¼ R1;1 ¼ dq1;2=2 and Z1;3 ¼ �Z1;1 ¼ dq1;2=2 can be

determined. More generally, for a given perturbed cylindri-

cal harmonic dqðn1;m1Þ, the equivalent perturbed toroidal

harmonics are Rn1;m1þ1 ¼ Rn1;m1�1 ¼ dqn1;m1
=2 and Zn1;m1þ1

¼ �Zn1;m1�1 ¼ dqn1;m1
=2.

In this work, the VMEC code is run in fixed boundary

mode, and a single field period is considered to be the

approximation of the cylindrical screw pinch. The major

radius of the equilibrium is taken to be R0;0 ¼ 100 m, the

unperturbed minor radius to be a¼ 1 m, and the perturbation

amplitude to be dq1;2 ¼ 1� 10�4 m. This choice of aspect

ratio (R0;0=a ¼ 100) along with a field periodicity of 100

attempts to mimic the cylindrical limit, while the perturba-

tion amplitude places us in a linear limit.

Analytic theory provides a framework against which to

compare the VMEC solutions. Linear perturbative ideal

MHD theory predicts that a resonant current sheet (the

so-called Dirac-d current) should form for the problem con-

sidered here. The capturing of such current sheets has been

used as a means to verify linear codes. However, for a con-

tinuous rotational transform profile, which is presently

assumed in linear codes, the existence of flux surfaces near

the current sheet is only possible in the limit of vanishing

perturbation. Allowing for a jump in the rotational transform,

Di, across the resonant rational ensures that flux surfaces are

preserved.3 More precisely, the solution of Newcomb’s

equation, which gives the radial profile of the plasma

displacement, nðqÞ, is consistent with the existence of flux

surfaces if the starting equilibrium has a rotational transform

profile of the form iðsÞ ¼ 0:6� 0:2s 6 Di=2, where the

6sign refers to either side of the resonant surface. As the

jump in transform gets smaller, the profile nðqÞ becomes

steeper and flux surfaces start overlapping when dn=dq > 1.

In fact, a minimum value for Di can be derived and shown to

be proportional to the applied resonant perturbation.3 Thus,

Loizu et al. have discovered a new class of solution to

Newcomb’s equation which preserves the nested flux surface

constraint, allowing interpretation of the VMEC results.

In order to gauge the behavior of the code, when not

being forced to resolve resonant rational surfaces, a series of

equilibria are evaluated with non-resonant boundary pertur-

bations (in fixed boundary mode). In these simulations, the

profiles were left unchanged from the cases with resonant

boundary harmonics. This simplifies comparison with

the resonant cases. In order to make the perturbations

non-resonant, the sign of the toroidal perturbed harmonic

was changed from n¼ 1 to n¼�1. This was the simplest

and most direct way to achieve a non-resonant perturbation

comparable to the resonant one. A series of equilibria with

ever increasing radial resolution can then be compared to

determine the rate of self-convergence of the code. Here, the

error metric is

Error ¼ 1

NS

X jnns � nhighresj
nhighres

; (6)

where nns is the radial profile of the perturbed harmonic at a

given resolution, nhighres is the radial profile of the perturbed

harmonic at the highest resolution (radially, 2048 grid

points), and the sum is over the radial grid points (NS). This

gives an appropriate measure of the rate of self-convergence,

which can be compared against the expected rate of conver-

gence (for the finite difference numerical method). In the

case of VMEC, this is a first order finite difference, suggest-

ing a second order scaling Oðn�2Þ (where n is the number of

radial grid points).

Self-convergence studies with respect to poloidal and

toroidal modes numbers were also conducted. These studies

were done using the 512 radial grid point case. To represent

our problem, the minimum toroidal mode numbers required

are n ¼ ½�1; 1� and poloidal mode numbers m ¼ ½0; 3�.
Examination of the resonant response across the rational sur-

face was used as a metric. Maximum toroidal mode numbers

from jnj ¼ ½1; 4� and maximum poloidal mode number m ¼
½3; 14� were considered. Little difference was seen between

choices of maximal mode number. In the end, m ¼ ½0; 9� and

n ¼ ½�3; 3� were chosen for the spectrum as these were a

good tradeoff between a large spectrum and computational

speed.

The overall goal of this work is to evaluate the VMEC

plasma response at a rational surface using Loizu’s solution

to the Newcomb equation. Such a comparison may be made

with other codes as well, but for now, we focus our attention

on the VMEC code.

III. RESULTS

Simulations of the resonant “screw-pinch-like” configu-

ration indicated a response, in the perturbed harmonics,

012507-3 Lazerson et al. Phys. Plasmas 23, 012507 (2016)
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around the q¼ 2 surface which depended on both the grid

resolution and local shear. Figure 2 depicts the profile of the

perturbed harmonic across the entire plasma volume, which

becomes steep around the q¼ 2 surface. Associated with this

steepening is a current density which peaks just inside the

q¼ 2 surface. A clear dependence on grid resolution is

present in these simulations. Non-resonant perturbations

were also examined showing no such response at the rational

surface.

As the radial grid resolution increases, the response at

the rational surface becomes more localized, as can be seen

in Figure 2. The non-axisymmetric current density becomes

peaked just inside the q¼ 2 surface. This was accompanied

by a steeping of the gradient in the perturbed quantity (n)

across the q¼ 2 surface. Self-convergence analysis (Eq. (6))

indicated that the error was scaling as n�1:8 (Figure 3). This

indicates that the code was converging at a rate slightly

slower than that can be expected from the radial finite differ-

ence (Oðn�2Þ). Scans of the aspect ratio and perturbation

amplitude (at fixed resolution) were also performed (not

shown). These scans indicated little dependence of the nor-

malized response (n) on aspect ratio or perturbation ampli-

tude. Such analysis suggests that so long as the aspect ratio

is greater than 6 and boundary perturbation amplitude is less

than 1� 10�2 m, the simulation is in the large aspect ratio

and linear limit (respectively).

The non-resonant perturbations that were investigated

showed no response at the rational surface, a result which is

consistent with linear theory. Self-convergence tests indi-

cated a scaling of n�2:2, consistent with a predicted scaling

of Oðn�2Þ for the first order finite difference. It should be

noted that the error in the non-resonant case was approxi-

mately three orders of magnitude smaller than that of the

resonant cases. The largest source of error in the resonant

case comes from inside the q¼ 2 surface, while the error is

fairly uniform with radius for the non-resonant case. These

self-convergence studies seem to suggest that the code is

behaving as expected given its numerical treatment.

A scan in the slope of the rotational transform indicated

a sensitivity to shear (di=dq) in the resonant case. The varia-

tion in shear was achieved through variation of the slope (i1)

of the i profile (assuming a form iðsÞ ¼ i0 þ i1s). Figure 4

depicts the dependence of the resonant response at the q¼ 2

surface as a function of shear. In these cases, as the i profile

steepens, the current density at the rational surface localises.

This behaviour is consistent with Loizu’s solution to

Newcomb’s equation, where the dependence on the gradient

in the response is proportional to the local shear

@nr

@q
¼ 2n

Dir

@ir

@q
; (7)

where n is the displacement, i is the rotational transform, Di
is jump in transform associated with the axisymmetric

current sheet, and the subscript r denotes evaluation at the

resonant surface. Loizu’s solution predicts that a minimum

discontinuity in the rotational transform is required to pre-

serve the flux surfaces across the resonant rational surface.

This minimum discontinuity in rotational transform can be

written as3

Dimin ¼ 2
@ir

@q
nr: (8)

In VMEC, there is no explicit discontinuity in transform;

however, using Equation (7), an effective Di can be

calculated

Dief f ¼
2n
n0r

i0; (9)

where the primes indicate derivatives with respect to q and

the subscript r implies evaluation at the rational surface.

FIG. 2. Profile of the perturbed q har-

monic (left) and the m¼ 2 n¼ 1 com-

ponent of the toroidal current density

(right) showing dependence on radial

resolution at fixed shear. Boundary

perturbation 1� 10�4 of minor radius.

The q¼ 2 surface is located at s¼ 0.5

(r=a � 0:7) in this plot. Note that the

toroidal current density includes a

Jacobian factor.

FIG. 3. Radial grid convergence study for both the resonant (x) and non-

resonant (o) perturbations. Convergence in the non-resonant limit is clearly

faster.
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Figure 4 depicts the a-posteriori calculated Dief f as a func-

tion of the slope in n at the rational surface. The resolution

and shear scan seem to fit the same trend suggesting that this

effective Di depends on not only the shear but also the radial

resolution. The trend also appears to meet the criterion

jDij > jDiminj � 4� 10�5 for the existence of flux surfaces

(value from Equation (8)). These calculations suggest that

the response at the rational surface is not as localized as

would be predicted by linear theory.

The linear screw pinch solutions of Loizu were also fit

to the VMEC solutions by varying Di in the linear model

(Figure 5). In this analysis, the Di in the linear model was

varied until a best fit, of Loizu’s solution, to that of VMEC

could be found. A perfect fit is not found in any case, but

solutions appear to be qualitatively agreeing. In all cases, the

effective Di found is greater than the Dimin necessary to

ensure the nested flux surface constraint. It should also be

noted that this Di is larger than that which can be attributed

to the finite difference method (larger than radial grid scale

differences). Details of the linear model can be found in

Loizu et al.3

These results indicate that the VMEC code is calculating

a plasma response across rational surfaces that is consistent

with a perturbative approach that enforces the existence of

nested flux surfaces. The plasma response is qualitatively

similar for this simple problem despite the lack of an explicit

discontinuity in the rotational transform. Calculations of an

effective discontinuity provide values which are consistent

with the presence of nested flux surfaces across the rational

surface. This suggests that while the accuracy of the code

may be further improved, the calculated plasma response is

consistent with the ideal MHD plasma response. Exact

agreement may be obtained if the discontinuous rotational

transform profile could be properly implemented in the

VMEC code.

IV. DISUSSION

In this work, a screw-pinch-like equilibrium was exam-

ined using the VMEC 3D ideal MHD code. A resonant

response was found which was consistent with a linear

plasma response assuming the existence of nested flux surfa-

ces everywhere. A test of the non-resonant response indicated

the code possessed expected self-convergence properties.

Here, the expectation of convergence was based on the radial

finite difference used in the code. The consistency with

Loizu’s solution to Newcomb’s equation came despite the

lack of an explicit discontinuity in rotational transform.

Calculation of an implicit discontinuity in transform sug-

gested values which were consistent with the enforcement of

nested flux surfaces in that theory. The implicit transform

discontinuity was always much greater than the minimum

required to preserve the nested flux surface constraint. Thus,

the VMEC plasma response has been verified against the lin-

ear ideal MHD equilibrium theory,3 in the limit of continu-

ously nested flux surfaces.

The source of the implicit rotational transform disconti-

nuity in VMEC is not clear. In the cases studied, the value of

this implicit Di was greater than the minimum value neces-

sary to preserve flux surface everywhere. Thus, VMEC is

clearly not near the limit for the non-existence of nested flux

surface solutions. The implicit Di was also much greater

than that which could be ascribed to numerical accuracy. It

would be assumed that the radial finite difference implies

some grid scale Di. For the shears and grids studied here, a

grid scale Di would be between 10�3 and 10�4. The studies

FIG. 4. Profile of the perturbed har-

monics for increasing iota-shear (left)

and the effective Di for both the reso-

lution and shear scans (right). All val-

ues are much greater than the

minimum Di required to guarantee

nested flux surfaces (�4� 10�4).

FIG. 5. Comparison of VMEC response

(solid) to Loizu’s solution to Newcomb’s

equation (dotted) (left) and the effective

Di necessary to fit each curve (right).

The colors are the same as those in

Figure 2, and NS refers to the number of

radial grid points.
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preformed did show that the response had a dependence on

both radial grid resolution and shear. This suggests that there

must be a relation between the grid resolution, the shear, and

Di which limits the dn=dq achievable in VMEC.

In the work presented here, a relatively simple equilib-

rium has been investigated. The question still remains to be

explored if these results hold for a more experimentally rele-

vant equilibrium. Figure 6 depicts the non-axisymmetric par-

allel current density for a DIII-D experimental equilibrium

computed with VMEC. In this experiment, an n¼ 1 field was

applied using the in-vessel coil set (two rows of six coils

each). A lobe in the current density appears well correlated

with the q¼ 2 surface, indicating similar phenomena to our

screw-pinch problem. Another stronger lobe can be seen

around the q¼ 10/3 (20/6) surface, and again at the q¼ 11/3

(22/6) surface. Here, the n¼ 6 resonance has been chosen as

the applied field of the I-coils has this fundamental mode.

Clearly, the phenomena of shielding currents at rational

surfaces are not limited to the screw-pinch problem.
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